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This paper describes a general-purpose programming technique, called Simulation of Simplicity, that 
can be used to cope with degenerate input data for geometric algorithms. It relieves the programmer 
from the task of providing a cons:istent treatment for every single special case that can occur. The 
programs that use the technique tend to be considerably smaller and more robust than those that do 
not use it. We believe that this technique will become a standard tool in writing geometric software. 
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1. INTRODUCTION 
This paper introduces a general technique that can be used to cope with degen- 
erate cases encountered by computer programs. Consider, for example, a program 
that sorts an array of integers using a comparison as a primitive operation. A 
special, or degenerate, case occurs when the program attempts to decide which 
one of two equal numbers is smaller than the other. A typical way to resolve this 
tie is to pretend that the number with the smaller index is smaller (assuming the 
integers are indexed, e.g., by their positions in an array). Or think of Kruskal’s 
algorithm for constructing a minimum spanning tree of a weighted graph (see 
[l]). At each step it chooses the shortest edge that can be added to the current 
collection of edges without creating a cycle. If this edge is not unique, then any 
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Fig. 1. The different cases in the Parity algorithm. 

one of the candidate edges is taken. The thus generated minimum spanning tree 
is therefore not unique unless we specify deterministic rules to break ties. 

In both problems, sorting and constructing minimum spanning trees, the 
special cases are easily dealt with, partly because the ties can be broken arbitrarily 
without creating inconsistencies. The situation is usually far more complicated 
for geometric problems. Consider, for example, the following seemingly straight- 
forward algorithm for the point-in-polygon problem that is sometimes called the 
Parity Algorithm: 

-Let r be the horizontal half-line whose left endpoint is the test point. 
-Count the number of intersections between r and the edges of the polygon. If 

that number is odd, then the test point lies within the polygon, and if the 
number is even, then it lies outside the polygon. 

As pointed out in [12], it is not a trivial matter to implement this algorithm, 
even if we assume that the test point does not lie on the boundary of the polygon. 
There are only two nondegenerate cases: Either the intersection between r and 
an edge e is empty, or r crosses e (see Figure la and b). There are, however, four 
degenerate cases (as illustrated in Figure lc-f) that have to be taken into account. 

A correct answer is obtained if cases (c) and (e) are counted as one crossing 
and cases (d) and (f) are not counted at all. If we write the code for the above 
algorithm, we realize that a substantial amount of the effort is required to cover 
the four degenerated cases. Observe also that there are several seemingly plausible 
ways to treat the degenerate cases and that some of them lead to incorrect 
algorithms. We appeal to the imagination of the reader to envision the bizarre 
structure of degenerate cases one encounters in generalizing the point-in-polygon 
problem to three or higher dimensions. Another problem with a set of degenerate 
cases that is considerably richer than the one of the point-in-polygon problem is 
obtained if one intersects a polygon with a geometric object that is more 
complicated than a half-line. 

When it comes to implementing geometric algorithms, degenerate cases are 
very costly, in particular, if there are many such cases that have to be distin- 
guished. This is caused by the positive correlation between the number of 
degenerate cases and a variety of factors that contribute to the overall cost of a 
piece of software. These factors include the length of the program, which, for 
itself, correlates positively with the amount of time required to write it, to debug 
it, and to maintain it. Of course, the degree of robustness of the program decreases 
with increasing complication. The correctness of a program relies on the consis- 
tent treatment of all different cases. In this context, it is worthwhile to mention 
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that more efficient algorithms tend to be more complicated and also more sensible 
to slight inconsistencies in treating degenerate cases. 

This paper presents a general technique, called Simulation of Simplicity (SOS), 
that can be used to cope with the problems mentioned above. Intuitively, it 
simulates a conceptual perturbation of the input data that eliminates all 
degeneracies. We hasten to mention that the perturbation is never ever com- 
puted-it is assumed to be arbitrarily small, although not vanishing, which is 
enough to simulate the nandegenerate topology. Another interpretation of the 
technique views it as a general way to break ties consistently. The tie-breaking 
part of the code appears in the lowest level of the algorithm, namely, in the 
procedures that implement the needed primitive operations. Different techniques 
following the same main approach have recently been suggested in [23] and [24]. 
A large part of this paper is devoted to demonstrating that the overhead in time 
caused by the use of the more elaborate primitive procedures required by SOS is 
negligible. 

The outline of this paper is as follows: Section 2 presents the general idea of 
the technique and works out some guidelines needed to implement it effectively. 
Section 3 considers a class of problems for finite point sets that can be solved 
using a common set of geometric primitives. It also discusses how the perturbation 
influences the geometric primitives. Section 4 demonstrates efficient implemen- 
tations of the primitive operations. In Section 5 we show that the geometric 
primitives introduced for point set problems can be used to solve a variety of 
other problems defined for polygons, hyperplanes, circles, spheres, and other 
geometric objects. Finally, in Section 6 we discuss the perturbation technique 
and its limitations. 

2. SOS: THE GENERAL IDEA 

Degeneracies occur with probability zero if we draw a finite number of geometric 
objects, each represented by a finite set of numbers from the (infinite) set of all 
such objects, provided there is no bound on the precision of the numbers used. 
In real-life computing, this is not the case; that is, there is only a finite set of 
available numbers and thus a bound on the precision that can be achieved. As a 
consequence, we are doomed to work with degenerate data. On the other hand, 
even infinite precision does; not guarantee the nonexistence of degeneracies. This 
section gives the general outline of a technique called the Simulation of Simplicity 
(SoS)-we use simple as a s:ynonym for nondegenerate-which allows us to neglect 
degeneracies when we writ,e programs. A similar but less elaborate method has 
been used to solve degenerate linear programs. This leads to the implementation 
of the simplex algorithm referred to as the “lexicographical method” (see [3], [4], 
[6], or [7] for details). In computational geometry, this technique has been used 
in a couple of papers, including [8] and [ll], to avoid the otherwise necessary 
discussion of degenerate cases. This paper presents the theoretical foundations 
of SOS, as well as details of its implementation. 

The basic idea of SOS is to perturb the given objects slightly, which amounts 
to changing the numbers that represent the objects; these numbers are called the 
coordinates or the parameters of the objects. It is important that the perturbation 
is small enough so that it does not change the nondegenerate position of objects 
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relative to each other. Coming up with such a perturbation is rather difficult and 
may require much higher precision than used for the original set of objects. For 
this reason, we perform the perturbation only symbolically by replacing each 
coordinate by a polynomial in E. The polynomials will be chosen in such a way 
that the perturbed set goes toward the original set as E goes to zero. We will see 
that it is not important to know the exact value of E to perform the simulation; 
rather, it is sufficient to assume that E is positive and sufficiently small. Thus, it 
will be possible to use E as an indeterminant and to handle primitive operations 
symbolically. 

The future user of SOS will not have to be concerned with the role that E plays 
in the perturbation or with the symbolic manipulation of polynomials. We may 
think of SOS as a package that provides the primitive operations needed for a 
certain computation. Ideally, the inside of these operations is hidden from the 
user, who communicates with them as one would with an oracle. It turns out that 
a large number of geometric problems can be solved using a surprisingly small 
number of primitives. Some of these primitives will be discussed in the following 
three sections. This section continues to develop the general ideas on which SOS 
is based. 

One of the goals of SOS is to perturb a set of objects such that all degeneracies 
disappear. A degeneracy is something that is not defined in general; its definition 
depends on the problem at hand. More specifically, it depends on the primitive 
operations used to solve the problem. For example, a primitive operation in the 
point-in-polygon algorithm described in the Introduction tests the intersection 
of a horizontal half-line and a line segment. A degeneracy occurs if the half-line 
contains one or both endpoints of the line segment. A set of objects is now called 
simple, or nondegenerate, or in general position, if it does not contain any 
degeneracy. We thus define “simplicity” relative to the primitives used to solve 
a problem. 

This paper considers only topological primitives, that is, operations that test 
some given input and classify it as one of a constant number of possible cases. 
This is in contrast to operations that compute new objects such as the intersection 
of a half-line and a line segment. In most programs, such an object serves only 
as an intermediate result anyway; but an intermediate result can as well be 
represented implicitly as a collection of pointers and a tag that tells us in what 
sense the objects identified by the pointers determine the (implicit) result. To 
simplify our discussion even further, we restrict our attention to primitives with 
three possible outcomes that we represent by +l, 0, and -1, where 0 indicates a 
degeneracy, and +l and -1 distinguish between the two nondegenerate cases. 
Tests that distinguish between more than two nondegenerate cases can be 
obtained by combining several ternary tests. 

If we think of a primitive operation as a function f that maps a high-dimensional 
point (whose coordinates describe the input objects) to +l, 0, or -1, then f-‘(O) 
represents the set of degenerate inputs. One requirement for this set is that its 
measure in this high-dimensional space is zero-otherwise, it is unreasonable to 
call its points degenerate. A set of n objects, given by d parameters each, can be 
thought of as a point in nd dimensions. If f takes k < n objects as input, then 
f-‘(O) is a surface of measure zero in U-dimensional space. This surface defines 
another zero-measure surface in nd dimensions that is obtained by embedding 

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990. 



70 l Simulation of Simplicity 

f-‘(O) in the kd-d’ imensional subspace defined by the k objects and extending it 
orthogonal to this subspace along the other coordinate axes. Other combinations 
of k objects provide additional zero-measure surfaces that, altogether, decompose 
the nd-dimensional space into faces of various dimensions. A cell is an nd- 
dimensional face of this decomposition, and all points of a cell correspond to 
nondegenerate sets of objects. A degenerate set corresponds to a point x in the 
union of the surfaces, den.oted by 9. Since 9 has measure zero, every nonempty 
open ball around this point contains a point y of some cell. Moving x: to y 
corresponds now to perturbing the set of objects that x corresponds to such that 
all degeneracies disappear. This shows that a perturbation to a nondegenerate 
set is always possible even if the amount of perturbation is severely limited. 
Recall that another requirement for the perturbation is that it does not change 
any nondegenerate subconfiguration. This means that we should not move x 
across a surface it did not belong to initially. This can always be guaranteed if 
we choose the open ball small enough that it does not intersect any surface that 
does not contain the initial position of x. 

To follow the forthcoming reasoning, it is not necessary for the reader to 
understand the topology of the nd-dimensional space as indicated in the above 
paragraph. Nevertheless, this view of the problem sheds some light on the nature 
of degeneracy. It also explains why there is always a small enough perturbation 
that removes all degeneracies. Below, we discuss such perturbations more specif- 
ically and address a few questions concerning the efficient implementation of 
SOS. 

Simplicity is simulated by applying a particular perturbation to a set 
P=lpo,p1,.. . , pnel 1 of n geometric objects 

Pi = tri,l, ri,2, * - * f r&d), Osisn-1, 

each specified by d parameters. It will be important that each object has a unique 
index between 0 and n - 1. The objects are in arbitrary, and therefore not 
necessarily in general, position. The perturbation of P is realized by replacing 
each parameter by a polynomial in E. We define 

P(E) = (pi(&) =: (Ki,l(E), Ti,2(&), . . . , Ti,d(E)) IO % i 5 n - l}, 

where 

Ti,j(E) = Ti,j + E(i, j) for O<isn-1, lsjsd, 

and &(i, j) is a polynomial in c that goes to zero when E goes to zero. We will refer 
to the new parameters rl,j(e), the new objects Pi(e), and the new set P(c) as the 
&-expansions of the origirml parameters ri,j, the original objects pi, and the original 
set P, respectively. The choice of the polynomials c(i, j) will be guided by three 
requirements SOS has to meet. 

(1) P(E) must be simple :if E > 0 is sufficiently small. 
(2) P(E) must retain all nondegenerate properties of the original set P. 
(3) The computational overhead caused by simulating P(e) should be negligible. 

As mentioned before, condition (2) is automatically met if E is small enough. 
To satisfy (l), it is sufficient to choose the E (i, j) such that there is no nonempty 
open interval I with the .property that P(e) is not simple if E I. Think of P as a 
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point x in nd dimensions, and let X(E) be the point that corresponds to P(E). The 
points X(E), E > 0, form a one-dimensional curve C in nd dimensions. Thus, (1) is 
satisfied if C n 9 is a discrete set of points. (Recall that 9 represents all points 
in nd dimensions that correspond to degenerate sets P.) In this topological 
setting, the phrase “E sufficiently small” gets a specific meaning: If co > 0 is the 
smallest value of e such that x(E~) E 9, then E is sufficiently small if and only if 
0 < E < to. It is less clear how condition (3) influences the choice of the ~(i, j). 
Below, we formulate a criterion for the polynomials ~(i, j) that leads to an 
efficient implementation of SOS. However, we do not claim that other choices of 
the c(i, j) cannot lead to efficient implementations too. 

Recall that a primitive operation is a function f that maps a set Q of k objects 
to +l, 0, or -1. If the c-expansion is defined properly, then f(Q(&)) E (+l, -1) 
provided E > 0 is small enough. In general, f(Q(c)) will be the sign of a fairly 
complicated function in E. (Since f is now a binary function, we can identify 
(+l, -1) with {true, false} and express it as a predicate. We will follow this 
practice in the following sections of this paper.) One way to allow for an efficient 
evaluation off (Q(e)) is to choose the E (i, j) in different orders of magnitude such 
that two expressions, each consisting of several factors of the form e(i, j), can be 
compared solely on the basis of the index pairs (i, j) involved. When we evaluate 
f (Q(E)), we can sort its terms in order of decreasing significance, which can be 
done by comparing sets of index pairs. The most significant term will be a term 
without any e-factor; it will be equal to f(Q). The first term with a nonzero 
coefficient decides the sign of the function. If Q is nondegenerate to begin with, 
then f (Q(c)) = f(Q), and no other term has to be determined. In Sections 3 and 
4, we will see that such a choice of the ~(i, j) allows us to determine the sign of a 
fairly complicated polynomial in only a few steps. 

Note that SOS requires us to tell when Q is degenerate, which means that we 
need to be able to decide whether or not f(Q) = 0. This is not possible with the 
kind of floating-point arithmetic that is usually provided by current computers. 
Instead, we need to use exact arithmetic and, thus, occasionally long integers. 
These admittedly somewhat expensive operations occur only inside the primitives 
and do not concern the user of SOS. Furthermore, the length of such long integers 
is bounded by a constant if kd, the number of input parameters off, is bounded 
by a constant. In most geometric algorithms, this constant is reasonably small. 
In Section 6 we report on our experience in implementing SOS and give an 
indication to what extent the use of long integer arithmetic slows down the 
computation. This point cannot be taken lightly because the long integer arith- 
metic is likely to occur in the innermost loop of any program that uses SOS and 
thus dictates the constant in front of the asymptotic running time. However, it 
is worthwhile to mention that the need for exact arithmetic is not a peculiar 
feature of SOS itself, but is necessary whenever we do exact computation rather 
than push our luck and hope for the cancellation of round-off errors. 

3. FINITE POINT SETS: A CASE STUDY 
For a further discussion of SOS, it is advantageous to apply it to certain geometric 
objects and certain primitive operations defined for these objects. We choose 
points in the d-dimensional Euclidean space Ed as the objects for the case study. 
Notice that this is actually no loss of generality since every object specified by 
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d parameters can be interpreted as a point in E d. The primitive operation that 
we will consider takes d + 1 points as input and decides on which side of the 
hyperplane spanned by the last d points the first point lies. As we will see in 
Section 5, this primitive operation has a wide range of applications. 

If a given finite point set is perturbed, as explained in Section 2, one can ignore 
all degeneracies and special cases. The price for this simulated simplicity is that 
the coordinates of the points are now symbolic expressions in . Even for a simple 
task, such as the comparison of two coordinates, we need a custom-made 
procedure that handles the E-expansions of the coordinates. Let xi,j be the jth 
coordinate of point pi, and let rk,l be the lth coordinate of pk, 0 I i, k 5 n - 1, 
and 1 5 j, 1 5 d. To decide which one of the two corresponding perturbed 
coordinates is smaller, we define a predicate Smaller as follows: 

smdkr(~r;,j; rk,l) = true iff Ti,j(E) < rk,l(&). 

Due to SOS, we can neglect degeneracies; that is, we have ri,j(c) # r&l(&), and for 
this reason the predicate Sm&!er(ri,j; r&l) = fake if and only if p<,j(&) > T~J(E). 
The implementation of this predicate is fairly straightforward since we can 
compare the e-terms, e(i, j) and E(k, l), by comparing the defining index pairs 
(see Section 3.2, Lemma 3.2). 

Predicate 1 (Smaller). Assume the e-expansion c(i, j) is defined as in 
Section 3.2 (2). With this, for indices 0 I i, k 5 n - 1, and 1 I j, 1 I d, which 
satisfy (i, j) # (k, l), th.e predicate Smaller (.rr;,j; x~,~) can be implemented as 
follows: 

function Smaller(zri,j; 7rk,J returns Boolean 
begin 

if 7ri.j # rk,l then 
return (.lri,j -C Kk.1) 

else if i # k then 
return (i > k) 

else 
return (j < 1) 

end 

Notice that, in this case, the coordinates ri,j and ?rk,l as well as their index pairs 
(i, j) and (k, 1) have to be passed as arguments whenever predicate Smaller is 
called. This means that in popular programming languages, such as Pascal, the 
function heading would be something like 

FUNCTION smaller (i, j, k, 1, Pij, Pkl): Boolean; 

but implementation details like this will be ignored in the remainder of this 
paper. Furthermore, notice that we have 

hh&?r(ri,j; rk,[) = true 
i f f  

In Section 3.1 we express more complicated predicates than just comparisons of 
coordinates by similar determinants. For matrices not exceeding a given size, it 
is not difficult to speci;fy the e-expansion c(i, j) such that all requirements 
discussed in Section 2 are satisfied. This will be done in Section 3.2. Finally, 
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Section 3.3 extends the results to homogeneous coordinates. The procedures that 
implement the predicates will be developed in Section 4. 

3.1 Predicates Expressed by Determinants 
This section introduces the notion of orientation of a sequence of d + 1 points 
in Ed. With this concept we will be able to give an implementation of the 
primitive operation for d + 1 points mentioned above. 

The orientation of a sequence of points (pi,,, pi,, . . . , pi,) in Ed is either negative 
or positive-unless the d + 1 points lie in a common hyperplane, in which case 
the orientation is undefined. The exceptional case is a degeneracy that can be 
ignored if the points are perturbed. We define the orientation of a sequence 
recursively. It will be important that the orientation of a sequence depends only 
on the relative position of the points to each other and not on their absolute 
positions. 

If the dimension d = 1, then the orientation of (pi,, pi,) is positive if pi, > pi,, 
and it is negative if pi, < pi, (cf. Figure 2a and b). If d = 2, then (piO, pi,, pi,) has 
positive orientation if the three points define a left turn in the plane; that is, pi, 
lies to the left of the directed line that passes through pi, and pi, in this order. If 
(p,, pi,, pi,) defines a right turn, then its orientation is negative. Note that the 
orientation of (pi03 pi,, pi,) is the same as the orientation of (piI, pi,) as “seen 
from” pi,. Indeed, the line through pi, and pi, can be identified with E1 as soon as 
we choose a direction of the line. This direction is provided by the location of 
p;o: It goes from left to right as seen from pi,, (see Figure 2c and d). 

If d > 2, then the orientation of (pi,, pi,, . . . , pi,) is the same as the orientation 
of (Pi,, . . . , pi,) as seen from pi,. For example, (pi,, pi,, pi,, pi,) in E3 has positive 
orientation if pi, observes (pi,, pi*, pi,) making a left turn. In most situations 
where the concept of orientation is used, the interest is in the position of one 
point, pi,,, relative to d other points, pi,, pi,, . . . , pid. We thus say that pi, lies on 
the positive side of (pi,, . . . , pi,) if (pi,, pi,, . . . , pi,> has positive orientation, and 
pi, lies on the negative side of (pi17 . . . , pi,) if (pi,, pi,, . . . , pi,) has negative 
orientation. 

To decide on the orientation of a sequence of d + 1 points in Ed, we use the 
matrix 

LEMMA 3.1 The orientation of (pi,,, pi,, . . . , p,j is positive if and only if 
sign(det A) = +l and is negative if and only if sign(det A) = -1. 

Notice that det A vanishes if and only if the d + 1 points are degenerate, that 
is, if they lie in a common hyperplane-a case that can be neglected within the 
perturbed point set P(E). Recall from linear algebra that the determinant of a 
matrix is multiplied by -1 if we exchange two rows. Thus, the orientation of a 
permutation of (p,, pi,, . . . , pi,) is the same as the orientation of the sequence 
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Pi, 
Pi, Pi, 

Pi, > 
Pi, Pi, Pi0 Pi, 44 7-- Pi, Pi0 

(a) (b) (cl (d) 
Fig. 2. The orientation of d I- 1 points in dimension d, for d = 1, 2. (a) Positive; (b) negative; 
(c) positive; (d) negative. 

itself if the number of t:ranspositions is even; otherwise, its orientation is the 
opposite of the orientation of (pi,, pi,, . . . , pi,). 

There are plenty of algorithms for point set problems that are based on 
computing the orientation of a sequence of points. Prime examples are the 
construction of convex hulls (see [9], [X3], [19], [20], or [22]), computing X- 
matrices as discussed in [9] and [14], and finding convex subsets (see [5], [9], 
and [lo]). The remainder of this section considers the primitive operations 
required by the three-dimensional convex hull algorithm of Preparata and Hong 
that is described in [9], [:@I, and [19]. 

The first step of the algorithm sorts the points in xl-direction. To perform this 
step, it needs to compare the x,-coordinates of two points, which can be done by 
computing the orientation of their orthogonal projections onto the xl-axis. 
Second, it constructs the two-dimensional convex hull of the points projected 
onto the x1x3-plane. Here, the primitive operation is to decide whether three 
points (in the x1x3-plane) define a left turn or a right turn. Third, the algo- 
rithm constructs the three-dimensional convex hull by repeating the following 
operation: 

Given a plane pivoting about two extreme points pi, and pi,, find the point 
hit first by this plane. 

This operation can be red.uced to a number of comparisons of the following form: 
Given two points pi, and pi,,, which one is hit earlier by the pivoting plane? To 
perform such a comparison is equivalent to deciding on which side of the plane 
throughpi,, pi23 andpi, pointp, lies. This is the same as computing the orientation 
of (PC, piI, pi,, pi,). Thus, we see that the convex hull algorithm of Preparata and 
Hong requires three primitive operations, all of which determine the orientation 
of point sequences. 

3.2 Choosing the Form 01 the Perturbation 
As explained in Section Xl, the primitive operation that determines the orien- 
tation of a sequence of d + 1 points in d dimensions computes the sign of a 
determinant of a (d + 1)-by-(d + 1) matrix. SOS replaces the coordinates ri,j in 
this matrix by entries of the form ri,j + c(i, j). The determinant itself is then the 
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sum of a finite number of terms, where each term is the product of d items and 
an item is either an original coordinate or an ~(i, j). Thus, each term consists 
of a coefficient, which is the product of original coordinates, and a so-called 
e-product, a product of factors of the form ~(i, j). The number of factors ~(i, j) 
can be zero, in which case the e-product is defined to be equal to 1. As mentioned 
in Section 2, it is irrelevant what exactly the definition of the c-expansion is as 
long as it satisfies certain requirements. The computational simulation is unef- 
fected if we change the definition of the c-expansion within allowed limits. Even 
so, it is important to show that there is at least one c-expansion that satisfies the 
requirements. The existence of such an expansion implies the physical existence 
of an appropriately perturbed point set, which is the only guarantee of the 
consistency of our method we have. 

We define 

.0(i, j) = ~2”6-j, \2) 

forO(iIn- 1, 1 5 j 5 d, and 6 L d, and show that this choice satisfies all the 
requirements of SOS. Notice that the amount of perturbation experienced by 
coordinate ri,j is larger than the perturbation of ah.1 if and only if (i, j) < (k, 1); 
that is, i < k or i = k and j > 1. Furthermore, we have 

n e(i, j) = JJ c2”‘-j > E2”.‘-’ = c(k, 1) (3) (i,j)~(k,l) (i,j)<(k,l) 

if 0 < E < 1. This is equivalent to stating that 2k’6-1, the exponent of &(k, l), is 
larger than the sum of the exponents of all e(i, j) with (i, j) -C (k, I). It follows 
that it is sufficient to consider the sets of index pairs when we compare two 
c-products. Let el and e2 be two different c-products, and let s(ei) and Y(e,) be 
the two associated sets of index pairs. We call 4(el) smaller than .Y(e,) if the 
set Z(e,) - Y(e,) is empty or if (i, j) 4 (k, Z), for (i, j), the largest index pair in 
.Y(e,) - Y(e,), and (k, Z), the largest index pair in Y(e,) - Y(e,). 

LEMMA 3.2 Let cl and c2 be two positive constants, and let el and e2 be two 
different e-products. Then cl . el > c2 . e2 for a small enough c if 4(el) is smaller 
than Y(e,). 

Lemma 3.2 is an immediate consequence of (3) and the fact that a small enough 
e can compensate the influence of the constants cl and c2. Notice that it is 
actually irrelevant which index pairs Z(el) and .Y(e,) contain. The only thing 
of importance is the relative position of 4(el) and 4(e2) in the ordering of all 
sets of index pairs, where large index pairs are more significant in the comparison 
of sets than small index pairs. Observe also that Lemma 3.2 holds if we increase 
the value of 6 in the definition of the c-expansion. It turns out that this lemma 
is the crucial property that allows us to prove that P(E), the perturbed point set, 
is simple and that the orientation of d + 1 points in P(c) can be computed 
efficiently. 

LEMMA 3.3 The set P(E) is nondegenerate if E > 0 is sufficiently small. 
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PROOF. To prove the a,ssertion, we show that, for no choice of d + 1 mutually 
distinct indices iO, il, . . . , id, the determinant of the matrix 

Tio& + p+* ri,,2 + g’- . . . Tio,d + p+-d 1 
Ti,,l + (!2” 6-1 ri,,* + p+* . . . H;,,d + p 6-d 1 

A(&) = 

1 * 

. 

: :I 

(4) 

7Fid,l +* p+ Tid,2 +* p6+ . . . Tid,d +* p+d ; 

is equal to zero. To see this, we assume w.1.o.g. that 0 5 i. < i, < . . . < id 5 
n - 1 and sort the terms of det A(E) in order of increasing exponents of E. 
Specifically, det A is the first term, and 

(.-l)rd/2’ . .$ 2’,.d-d+2i2.6-,d--1,+, ,+*,&a-, 
9 

the last one. Each term is of the form b . cc, for some constants b and c. Because 
we can assume that e > 0 is arbitrarily small, the absolute value of the first term 
with nonzero coefficient b is bigger than the sum of all other terms. Furthermore, 
such a term always exists since (3) guarantees that no two terms of the deter- 
minant have the same exponent of E, and thus, such a term cannot cancel. For 
example, the coefficient of the last term is (-1) rd/2’ # 0 and cannot be canceled 
by any other term. Consequently, det A(E) does not vanish. 0 

As pointed out in the proof of Lemma 3.3, the most significant term of the 
polynomial det A(E) is the determinant det A of the original coordinates. If the 
orientation of the original sequence (pie, pi,, . . ’ . , pi,) is defined, then this term is 
nonzero, which implies that the orientation of the perturbed sequence is the 
same. This is reassuring since it shows that the perturbation does not change 
nondegenerate relations of the original point set. 

The curious reader might wonder why the perturbation is defined in the 
peculiar form given by the &-expansion (2). As mentioned before, there are many 
other choices that could be used, for example, 

E(i, j) = E2i.a+j 

is such a possibility. This &-expansion would also work, but its implementation 
is slightly more difficult than that of (2) (cf. Section 4.2). On the other hand, 
many less “exotic” choices do not work. The remainder of this section illustrates 
this by considering two choices of e(i, j) that appear simpler than (2). The two 
choices are 

E(i, j) = ,i.a+i and c(i, j) = (i . 6 + j) . E. 
In both cases, Lemma 3.3 does not hold. The reason for the failure is that both 
expansions do not satisfy (3) and thus possibly lead to cancellations of E-terms 
in det A(E). Such cancellations occur, for example, if all d + 1 points of the 
sequence coincide with the origin. In this case, the matrix A(e) equals 

c(io, 1) E(&, 2) ... &(i,,, d) 
c(il, 1) c(il, 2) . .. e(il, d) 

&(i& 1) C(id, 2) *** &(id, d) 
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If we define ~(i, j) = ~~.~+j, then the second column is equal to E times the first 
column, which implies that det A(c) = 0 if d 1 2. If &(i,j) = (i . 6 +j) . E, then 
the sum of the first and the third columns equals twice the second column; hence, 
det A(E) = 0 if d 1 3. 

3.3 Homogeneous Coordinates 
When we develop the primitive procedures for computing the orientation of 
d + 1 points in Section 4, we represent a point by its homogeneous coordinates. 
This representation is slightly more general than ordinary Cartesian coordinates 
(it can also represent points at infinity) and leads to a slightly more uniform 
procedural treatment. 

Let p be a point in Ed, and let (?rF, ?rg, . . . , 7r,“) be its sequence of Cartesian 
coordinates. Point p has d + 1 homogeneous coordinates 

CT 
‘4 
1, d, . . * , 

H H 
rd; rd+l ) 

such that 

Thus, p is l/r:+:, times the point whose Cartesian coordinates are equal to the 
first d homogeneous coordinates of p. Notice that the homogeneous coordinates 
of p are not unique; we still represent the same point p if we multiply each 
coordinate by the same nonzero scalar. If we decrease the absolute value of *f+, 
without changing the other homogeneous coordinates, then p moves away from 
the origin on a straight line and reaches “infinity” when of;‘+, becomes 0. Indeed, 
p is “at infinity” if and only if ir:+i = 0. Using homogeneous coordinates, it is 
not allowed to have all d + 1 coordinates equal to O-in this event, p is not 
defined. 

We next extend Lemma 3.1 to homogeneous coordinates; that is, we charac- 
terize the orientation of a sequence of d + 1 points (pi,,, pi,, . . . , pi,), 

* 9 ri.,d; fi,.d+l 7 H H ) 

in terms of their homogeneous coordinates. The orientation of a sequence of 
d + 1 points is not defined if any of the points lies at infinity. In fact, it is not 
possible to generalize the notion of orientation to points at infinity without 
changing our interpretation of a point at infinity. For example, consider a 
sequence S of d finite points and one point p = (7rr, =F, . . . , ry; 0) at infinity. 
We can think of p as the limit of points 

when E > 0 goes to zero, but as well, we can think of p as the limit of these points 
if E is negative and approaches zero. If we replace p by p(e) with E small enough, 
then E > 0 and e < 0 lead to different orientations. We thus restrict our discussion 
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of orientation to finite points. Define 

A= 

If (f,d+l = 1, for 0 5 v 5 

(5) 

d, then A is the same as the matrix A used in __ 
Lemma 3.1. Otherwise, we can multiply the rows such that ~f,~+i = 1. The sign 
of det A changes if we multiply a row with a negative number, which implies the 
following result: 

LEMMA 3.4 Let (pi,,, pi,, . . . , pi ) be a sequence of points with pi, = 
(7fl, 37’:,2, . . . , red, Tfd+l) and Ti4d+1 

sign(det A) = II?='=, sign(iH 
# 0. Their orientation is positive if 

and undefined if det A = 0. 
l,,d+l)9 TZegiiiVe if sign(det A) = -nf+ sign(xF,,+,), 

In contrast to Cartesian coordinates, a point is now represented by d + 1 
coordinates, which makes it necessary to choose 6 2 d + 1 when defining the 
c-expansion &(i, j) in (2). With this, it is easy to prove that determinants cannot 
vanish, which implies that Lemma 3.3 holds also for the new setting using 
homogeneous coordinates. 

4. IMPLEMENTING A PREiDlCATE 

This section presents the actual implementation of a geometric predicate using 
SOS. The chosen predicate determines the orientation of a sequence of points, as 
defined in Section 3. Its implementation will be based on the e-expansion specified 
in Section 3.2 (2) and on the fact that the orientation can be found by evaluating 
the sign of a determinant as stated in Sections 3.1 and 3.3. The crux of the 
implementation is that this determinant is a polynomial in c. The computation 
of the sign of such a polynomial is discussed in Section 4.1. The coefficients of 
the polynomial turn out to be subdeterminants of the original matrix. Based on 
this observation, Section 4.2 gives an algorithm that generates these subdeter- 
minants in sequence of dec:reasing significance by employing a special encoding 
scheme. Finally, in Section 4.3 we briefly address the problem of sign computation 
of integer determinants in general. 

In Sections 3.1 and 3.3, we defined the “orientation” of a sequence of points in 
d-dimensional Euclidean space given by Cartesian and homogeneous coordinates. 
We now formally develop the corresponding predicate that uses perturbation in 
the sense of SOS. In the Cartesian case, each point py is given by its d coordinates 

whereas in the case of homogeneous coordinates a point is represented by a 
(d + l)-tuple 

PY = (rv.1, . . . , rv,d; rv,d+l). 
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Let 

p = {PO, . * *, Pn-11 

be a set of n points in Ed, and denote by 

P(E) = (P&L * * *, Pn-l(C)1 
its perturbed version using the c-expansion of Section 3.2 (Z), assuming 6 is large 
enough so that Lemma 3.2 is valid. Now define for d + 1 points with distinct 
indices iO, i,, . . . , id, all in the range from 0 through n - 1, 

Positived(Pk, . . . , Pi,) = true 

iff 
the orientation of (pi,(E), . . . , pid(&)) is positive. 

Degenerate cases can be neglected because we simulate simplicity. From 
Lemma 3.1 it follows that Positived is equivalent to the test of whether or not 

sign(det A(E)) = +l, 
with A(E) denoting the corresponding matrix of the perturbed Cartesian coordi- 
nates as in (4). In the homogeneous case (see Lemma 3.4), we have to check 
whether or not 

d 

sign(det A(E)) = n sign(ai”,d+l(&)). 
v=o 

Here, A(e) denotes the perturbed version of matrix A in (5), whose rows are 
formed by the homogeneous coordinates of the points involved; that is, 

Tic,1 + E(~o, 1) P;,,z + e(iO, 2) 

I * 

*. . ri,,,d+l + c(iO, d + 1) 
Ki,,l + e(il, 1) Ki,,2 + e(il, 2) * *. Hil,d+l + c(il, d + 1) 

A(E) = : 

rid,1 + E(id, 1) rid,2 + C(id, 2) * a * i I. ni,,,d+l + &lid, d + 1) 

At first sight, the development of such an e-determinant seems to be a painful 
exercise. Yet, it will turn out that it is not that hard and can be achieved in an 
algorithmically clean way. Anyway, to begin with something easy, consider 

det A,(E) = det Pi,1 + c(i, 1) Ti,2 + c(i, 2) 
rj,l + C(j, 1) rj,2 + 4, 2) ’ 

Let e((il,jl), . . . , (ik, jk)) = nfzl e(i,,j,), and call it a k-fold c-product; E( ) = 1 is 
called the O-fold e-product. Furthermore, assume i <j. When we now develop the 
determinant, we get 

-Tj,l * E(i, 2) + ?Tj,z * e(i, 1) + (6) 
+ri,1 * 4.i 2) + 1 * E((j, 21, 6, 1)) - 

-7q2 . e(j, 1) - 1 . e((j, I), (6 2)), 
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where the terms are already sorted by increasing powers of e. Note again that the 
first coefficient correspond,s to the “unperturbed” determinant, that is, A,, whose 
evaluation would be part of any implementation of the predicate-of course, 
followed by the more or Iless awkward handling of all possible degeneracies. 
Observe also that the coefficient of the fifth term is a constant, namely, +l. 
Thus, the last two terms have no influence on the sign of det A,(e). Therefore, 
the number of relevant terms of the &-polynomial det A,(c) is only 5, rather than 
7, which is the total number of terms. 

It is convenient to assume i0 < . . . < id (cf. (6)). This assumption, together 
with Lemma 3.2, implies that the sign of det A(E) and det A(E) can be computed 
without any further knowledge of the values of the indices. Clearly, this is not 
the case in general, but can always be achieved by appropriate row exchanges in 
A(E) or A(e)-recall that each exchange changes the sign of the determinant. 
For this, assume there is a procedure SO&+~ ((i,,, . . . , id), (i;, . . . , ii), s’) that 
returns for a given sequence of d + 1 indices (iO, . . . , id) the sorted sequence 
(ii, . . . , i:). Additionally, Sortd+l returns s’, which is set to the number of 
exchanges used. We can now implement predicate Positived using two operations, 
SignDet A and SignDet A, that compute the sign of the c-polynomials 
det A(E) and det A(c), assuming iO < - - - < id. Both functions will be discussed 
in Section 4.1. 

Predicate 2 (Positive). Let pk, . . . , pid be d + 1 points in Ed given in Cartesian 
or homogeneous coordinates with distinct indexes all between 0 and n - 1. Then 
the following pseudocode is an implementation of the predicate Positive& 

function P&t~ved (pi,, 7 . . . 3 pi,) returns Boolean 
local ib,. . .,ih, d’, s’, v 
begin 

SOT~d+l((h . . . , id), (ii ) . . .) ig, s’) 

if Cartesian coordinates then 

( 

Iih,l(E) .. . ~i~,d(&) 1 

d’ c signDet&+l i . i i -. 

VJ Cc) . . . ~ik,d(‘) 1 I 
else 

( 

“;;,1(&) - * - Xik,d(E) Aih,d+l(E) 

d’ t SignDet&+l i *. 

*i>,l(&) i 1 ’ * ’ Rik,d(E) TiL,d+l(E) 

if odd(s’) then d’ t - d’ 
if Cartesian coordinates then 

return (d’ = +I) 
else 

return (d’ = II?=, skn(niy,d+l(c))) 
end 

The problem is now to give efficient implementations for the two functions 
SignDet Ad+1 and SignDet Ad+l. We feel that it is important to stress that 
“efficiency” is meant in a practical sense-in theory it can be done in constant 
time anyway, assuming d is a constant. 
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990. 



H. Edelsbrunner and E. P. Miicke - 81 

4.1 The Sign of a Perturbed Determinant 
We now illustrate the implementation of SOS on the bottommost programming 
level by implementing the function SignDet A,, which returns the sign of 
a D-by-D c-determinant det A,(E) for any given D; primitive SignDet ho can be 
treated in the same way. To appreciate the significance of a (practically) efficient 
implementation of SignDet AD, we point out that this is in fact the major part of 
SOS, at least when applied to the predicate described above. Provided that 
iO< . . . < io, we will show that it is possible without great effort to generate the 
sequence of the coefficients of det A,(E) in decreasing order of significance. Since 
e can be assumed- to be sufficiently small (but positive), the sign of the 
e-polynomial is therefore equivalent to the sign of the first nonvanishing 
coefficient. 

Using simple rules for evaluating a determinant as exemplified for det A, (E) in 
(6), the coefficient of every term in det A,(E) is a subdeterminant of the 
“unperturbed” matrix A,. Here, a single entry is called a l-by-l subdeterminant, 
and by definition, the O-by-O subdeterminant is equal to 1. To tell the whole 
truth, we must mention that each coefficient in effect is a subdeterminant 
together with a certain sign, that is, multiplied by either +l or -1. We will see 
in Section 4.2 how to decide whether +l or -1 applies. To continue our discussion, 
we need a few notations. We say that the (t + 1)st coefficient in order of 
decreasing significance, denoted by det MF, is the cofactor of depth t of 
matrix A,(E). Note that this coefficient already includes its proper sign. Thus, 
det M$’ = +det A,. The size of the corresponding matrix (i.e., the number 
of rows or columns) is denoted by k, = k(MF). These definitions are illustrated 
in Table I, which shows all significant terms of det A,(E). In the column with the 
heading et, we display the &-product associated with the cofactor of depth t. 
Column ut will be explained later. 

This leads to the pseudocode implementation of SignDet A, shown below. It 
assumes that iO < . . . < i. and that the sequence of subdeterminants, sorted by 
increasing depth, is known. The code also requires a function SignDet&) that 
calculates the sign of det @ for a k-by-k matrix a. The authors have not been 
able to find an alternative way to determine the sign other than by computing 
the actual determinant. Unfortunately, computing the (exact) determinant of a 
matrix of integers demands the use of long integer arithmetic. More about that 
in Section 4.3. 

function SignDetAD (AD) returns +l or -1 
local 0, Ict, t 
begin 

tc -1 
repeat 

tct+1 
kt t k(MtAD ) 
u +- SignDetk,(MtAD) 

until u # 0 
return f.7 

end 
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Table I. The 5 Relevant Terms of det AZ(E) 

t kt . k, ut det M> et 

0 2'2 13, 3; 31 
+det *i,1 ri,z 

( ) ri. 1 Tj'j, 2 4 ) 

1 1.1 P, 3; 31 -det(r,,,) = mrj.1) c(i, 2) 
2 1.1 [I, 3; 31 +det(rj,z) = +~,.z c(i, 1) 
3 1.1 P, 2; 31 +det(ril) = +ql di, 2) 
4 0.0 L 2; 31 +det( ) = +l c((i, 21, (i, 1)) 

Function SignDet AD “scans” through the table of relevant subdeterminants. 
Two lines of the pseudocode, “kt t k(M,a”)” and “a t SignDetk,(MF),” indicate 
table lookups. In Pascal this could be implemented as a CASE-statement. For 
D = 2, it would consist of five different cases as shown below: 

CASE t OF 
0: s := SignDet2 (Pil,Pi2,Pjl,Pj2); 
1: s := -Sign (Pj I> ; 
2: s := Sign (Pj 2) ; 
3: s := Sign (P/ii) ; 
4: s := 1; 

END ; 

If the depth counter is of no interest, one can even unwind the loop and come up 
with the following code: 

FUNCTION SignDetDaltaP (Pil, Pi2, Pjl, PjZ): Integer; 
BEGIN 

SignDetDeltaB := SignDet2 (Pil, Pi2, Pjl, Pj2); 
IF-SignDetDelta2 < 5> 0 THEN goto 999; 
SignDetDeltaB := -Sign (Pjl); 
IF SignDetDeltaB < >a 0 THEN goto 999; 

iignDetDeIta2 := 1; 
999: (* exit *) 

END; 

To give more insight into the computation of the terms of det A,(E) in the 
order of decreasing significance, we now consider the three-dimensional case, 
that is, 

( 

’ 7ri,l + c(i, 1) 7q2 + c(i, 2) ri,3 + 4 3) 
det A,(E) = det r;,l + ~(j, 1) 7r;,2 + ~(j, 2) rj,3 + ~(j, 3) . 

srk,l + EN, 1) rk,2 + c(k, 2) Tk,3 + &(k, 3) ) 
This polynomial has a total of 34 terms. However, only 15 of them are relevant, 
and those are listed in Table II. There are two reasons why we only need 
to test 15 coefficients out of a total of 34. One is that the coefficient of 
c((k, 3), (j, 2), (i, 1)) is equal to +l, which is nonzero; we can therefore stop there 
and consider no further terms. The other reason is that certain coefficients occur 
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Table II. The 15 Relevant Terms of det A,(e) 

t kc . kt Vt det Mp El 

0 3 

12 

2 2 

3 2 

4 2 

5 1 

6 1 

7 2 

8 1 

9 2 

'3 

2 

2 

2 

1494, 4; 41 

13, 4,4;41 

[2,4, 4; 41 

[3, 3, 3; 41 

[2,3, 3; 41 

L 3, 3; 41 

[2, 2, 3; 41 

11, 2, 3; 41 

+det(w) = +T~,~ 

-det( m,d = -Tk,z 

+det( 1Tk.3) = +ak,3 

-det(lr,,,) = -T~,~ 4k 31, k 2)) 

+det(rj.,) = +r,.,.z 4th 3), (6 1)) 

+det(q,) = +q, d(k, 3), (i2)) 

+det( ) = +l 4(k, 31, (i, 2), (i, 1)) 

4 ) 

c(i, 3) 

4i, 2) 

46 1) 

dh3) 

4(j, 3), (i, 2)) 

e((j, 31, (i, 1)) 

4i, 2) 

4t.i 3, (i, 1)) 

4, 1) 

dk3) 

more than once, that is, with different c-products. For example, 

det A,(E) = .a. + 7r~k,~ . E((j, 2), (i, 1)) ... -r@ . &((j, l), (i, 2)) . . . (7) 

Clearly, there is no need to test -7r k,3 # 0, since at this depth +K~,~ = 0 is already 
known; otherwise, the sign determination would have stopped immediately after 
testing the coefficient of &( (j, 2), (i, 1)). 

4.2 Generating the Sequence of Significant Coefficients 
The properly sorted sequences of c-terms of the polynomials det A,(c) and det 
A,(E) are apparently very regular. In the following, this regularity will be worked 
out and exploited by an algorithm that automatically generates the correct 
sequence of c-terms. This procedure can be embedded in an implementation of 
the function SignDet AD that computes the sign of det A,(E). We agree that a 
procedure that generates each term of det A,(E) by collecting the proper rows 
and columns of the original matrix is, in a practical sense, much slower than a 
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straight-line program that. scans through a fixed sequence of submatrices. How- 
ever, in higher dimensions the former might be the better strategy, since the 
likelihood of det MAD = 0 for all 7 with 0 5 7 5 t decreases very fast as t increases, 
not to mention the’ fact that the tables of relevant terms for det A,(C) become 
rather long for large D. The algorithm to be described can also be used for 
automatic generation of such tables and even for the automatic generation of 
codes implementing them. 

We now discuss in detail how we can extract the individual terms of the 
polynomial det A,(E). Recall that a term is of the form b . cc, where b is called 
the coefficient and eC is the e-product of the term. If eC = E ( (i1, jl ), . . . , (ik, j,)) 
(so it is a k-fold E-product), then we call ~(i,, j,) actiue, for 1 % 1 5 12. Given the 
E-product of a term, we can extract the coefficient b from the given matrix by 
crossing out all rows and columns that contain an active E (i,, j,). In order to avoid 
extensive double indexing and index inversions, we assume that the points whose 
coordinates are the entries in the D rows of the matrix A, have indexes 1 through 
D. This allows us to ignore the difference between a point index and the 
corresponding row index. Indeed, this assumption is no loss of generality since 
the only property used in computing the sign of det AD(C) is that the point 
indexes are sorted and, therefore, the actual values are irrelevant. With this 
assumption, ~(i,, j,) is in the i,th row and the j,th column, and we cross out rows . . 
11, 12, -.a, ik and columns j,, j2, . . . , j,. This leaves a (D - Iz)-by-(D - k) 
submatrix. Table II illustrates these definitions for D = 3. If b . eC is the term of 
depth t, then the notation in Table II is such that b = det Mp, E’ = et, and k, is 
the number of rows (or columns) of Mp. 

Note that we did not yet specify how we can decide whether b is -1 or +l 
times the determinant of the submatrix. We now describe a rule that is based 
on the number of transpositions needed to sort a certain permutation. For 
row L, 1 5 L 5 D, let j, be the column such that E(L, j,) is active in the term that 
we currently consider. By definition of a determinant, there can be at most one 
such column, but it could very well be that there is no such column. In this case 
we choose j, such that rL,j, belongs to the main diagonal of the submatrix that 
was obtained after crossing out rows and columns as described above. If the 
number of exchanges needed to sort (j,, j2, . . . , j,) is odd, then b = det Mf” is 
-1 times the determinant of the submatrix; otherwise, it is +l times this 
determinant. 

Interestingly, the number of exchanges needed to sort the sequence 
(A, h, . . . , j,) is even if and only if i, + ji, is odd for an even number of pairs 
(i,, ji,), 1 I L s k. To see this, notice that the total number of pairs (K, j,) 
with K + j, odd is even sin.ce 

HE1 (K + j,> = 2 ,i K. 
n=l 

Now observe that (j,, j2, . . , j,) can be sorted using only exchanges of adjacent 
columns, that is, of integers j, that differ by one. Note also that we can dispense 
with all exchanges between two columns where both contain an active e(i, j) or 
both do not. Thus, every exchange of two columns increases or decreases the 
number of pairs (i‘, ji,) with i, + j, odd by one, which implies the claim. This 
property will be used in the algorithm that computes the proper sign. 
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The key observation that allows us to automatically generate the relevant 
terms of det A,(E) is that e((ii, ji), . . . , (ik, j,)) is the E-product of a relevant 
termifandonlyifi,< a.. <&andj,< ..a <j,. In other words, the c(i,, j,) go 
monotonically from the left top to the right bottom of the matrix. To see this, 
take an c-product that does not satisfy this condition, and consider the E-product 
defined by the same 2k indices that is obtained by matching the smallest i, with 
the smallest j,, the two second smallest indexes, etc. This new E-product is more 
significant than the old one since the exponent of E it defines is smaller than the 
exponent of the old e-product. Furthermore, the coefficients that correspond to 
the two c-products have the same absolute value, namely, the determinant of the 
submatrix obtained by crossing out rows i, and columns j,, for 1 % L I k. 

The algorithm that generates the &-products and their corresponding coeffi- 
cients uses a vector 

where each Ui is an integer between 1 and D + 1 and ui corresponds to the ith 
row of det A,(E); u~+~ is set equal to D + 1 and is used only for convenience. The 
interpretation of u is as follows: To encode the c-product c((&, jl), . . . , (ik, j,)), 
we set vi, = j, for 1 I L 5 k. For every i such that the ith row does not contain an 
active c(i, j), we define Ui = u;, with i, the smallest integer in (iI, . . . , ik, D + 1) 
that is larger than i. Thus, u, in u implies that E(K, u,) is active if and only if 
u, < u,+1. For example, u = [3, 4, 4; 41 implies that the c-product of the encoded 
term is ~(1,3). Other examples can be found in Table II, which gives the vectors 
of all relevant terms in det A,(c). 

The next problem we face is how to generate the terms of det AD in the correct 
order, that is, in the order of decreasing significance. Here we use the fact 
that U = [Ul, . . . . ud; u~+~] encodes a more significant term than 
ut = Eu:, . . . , u;; ULl,l ] if and only if Uj > uf for j, the largest index, such that 
Uj # u,!. This implies that u = [D + 1, . . . , D + 1; D + l] encodes the most 
significant term and, indeed, it encodes E( ) = 1, whose coefficient is the deter- 
minant of the entire original matrix. It is now easy to write a function that 
computes for a given vector its successor. 

function iVezt-v (17) returns Vector 
local L, K. 
begin 

L+-1 
while v, = 1 do L + L + 1 
V‘ +-- V‘ - 1 
forntL--ldowntoldov,tv, 
return v 

end 

The alert reader will have noticed that this function returns an “illegal” vector 
if the input vector is [l, . . . , 1; D + 11, which is not a problem, since the 
determinant evaluation is such that [l, 2, . . . , D; D + l] already encodes a 
nonzero coefficient, and thus there is no reason to call Next-u again. 
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After initializing u to [D -t 1, . . . , D + 1; D + 11, successive calls to Next-u 
give the desired sequence of vectors. It remains to be shown how the coefficient 
of the encoded term can be computed. The procedure below decodes u and returns 
the submatrix M obtained after deleting the proper rows and columns from A,. 
It also returns s equal to -1 or +l, depending on whether the coefficient equals 
-det M or +det M, and returns k, which is equal to the number of rows (or 
columns for that matter) of M. 

procedure Muttiz (0, s, k, M) 
global AD, D 
local L 
begin 

M + AD 
kcD 
St +1 
for L t 1 to d do 

if w, < v,+l then 
{in this case E(L, vL) is active} 
if odd(L + v,) then s c -s 
delete row L from M 
delete column w, from M 
X:+-k-l 

end 

We can now modify the code of SignDet AD by replacing the table lookup by 
appropriate calls to Next-u <and Matrix. With additional modifications the same 
algorithm can be used to generate the table of relevant terms in det A,(E) or 
even to generate the corresponding code for SignDet AD for any D. Note that, in 
the latter case, the loop in SignDet AD is to be repeated only until k, = 0, since 
in “generating mode” the values of the determinants are not computed and thus 
there is no natural abortion ‘of the cycle of calls. The result for D = 4 can be seen 
in Table VI in the Appendix. 

A nice feature of the above algorithms is that we only need to change the 
initialization of u to [D, . . . , D; D] to get an implementation for SignDet AD that 
computes the sign of the e-polynomial det A(c). For this case, the loop over all 
relevant terms has to be repeated either until the corresponding cofactor is 
nonzero or, if we are in “generating mode,” until k, = 1. See Tables III-V in the 
Appendix for the relevant terms of det A,(E) for D = 2, 3, 4. It seems worthwhile 
to mention that Cartesian coordinates should be used whenever possible. This 
reduces the problem roughly by one “dimension,” as compared to the homoge- 
neous case (cf., e.g., Tables II and IV). 

The presented c-polynomials det A,(E) and det A,(e) illustrate that the 
computational overhead caused by SOS is acceptably small. One has to keep in 
mind that the most significant term of these c-determinants corresponds to the 
original determinant that expresses the primitive. So, there is no way around the 
evaluation of the sign of this determinant for any implementation. If the input 
data are nondegenerated, th.e cost of SOS is obviously zero, and in general, it is 
rather unlikely that the polynomials have to be evaluated down to large (depths. 
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Indeed, the largest depth or the sum of all depths that occurs in a computation 
can be used as a measure for the degree of degeneracy of the input data. 

By evaluating the subdeterminants, we systematically take care of all possible 
degenerate cases. Take, for example, the evaluation of det ha(&). Different cases 
can be distinguished by looking at the largest depth &ax reached during the 
computations. This t,,, can be 0, 1, 2,3, or 4, and the corresponding degeneracy 
is as follows (compare with Table IV in the Appendix): 

t max = 0: The three points pi, pj, and pk are in general position. 
t max = 1: The three points are collinear, but pj # pk and the line containing the 

three points is not vertical. 
t max = 2: The three points lie on a common vertical line, but pj # pk. 
t max = 3: Point pi coincides with pk, but not with pi, and the line through pi and 

pj is not vertical. 
t max = 4: All three points lie on a common vertical line, and pj = pk. 

It would be interesting to see this somewhat unnatural case analysis in greater 
detail since it gives a nonobvious breakdown into degenerate cases that has 
curious properties. 

This discussion completes the implementation of SOS with respect to the 
predicate Positbed for point sets in Ed. We considered both the Cartesian and 
the homogeneous case. The key was to find a method that generates the proper 
sequence of relevant terms of det A,(E) and det AD(c) ordered by decreasing 
significance. With this, the implementation of the functions SignDet A, and 
SignDet A, was easy. We will see in Section 5 that both functions can also be 
used to implement other predicates. 

4.3 Remarks on the Sign Computation of Determinants 
In the previous sections, we reduced all computations to a sequence of sign 
evaluations of determinants. In the primitives discussed in this paper, the 
matrices are at most of size (d + 2)-by-(d + 2), d the dimension of the space, and 
all elements are assumed to be integers. Theoretically, the sign of such a 
determinant can be determined in constant time if we assume that d is a con- 
stant. This assumption is indeed fair since SOS is intended primarily for low- 
dimensional geometric computations. In practice, however, it is important to 
optimize the sign computation since it will be in the innermost loop of every 
program that uses SOS-which does not mean that this issue is less important 
for programs not employing SOS. We remark on a few methods that can be used 
to get speed in these computations. 

One important condition that we have to meet is that the sign of the determi- 
nant has to be computed exactly-we cannot tolerate a +l for a 0, etc. Assuming 
that the coordinates or parameters are integers, we can use either long integer 
arithmetic or modular arithmetic based on the Chinese remainder theorem. For 
details on both methods, refer to [16]. If we actually compute the determinant in 
order to find its sign-and no method is known to the authors that avoids the 
actual computation of the determinant-we have to be prepared to deal with 
numbers of absolute size at least pD, where p denotes maximum absolute value 
of any data item and D denotes the largest size of matrices we work with. To see 
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this, just take the D-by-D matrix whose entries are all zero except for the ones 
in the main diagonal, where they are equal to p; the determinant of this matrix 
is pD. An upper bound on the absolute value of the determinants is given by a 
well-known theorem of Hadamard that states that 

Among other things, this upper bound on the absolute value of a determinant 
gives us an upper bound on the number of computer words needed for the 
computation if we use long integer arithmetic. 

Without any hardware support, long integer arithmetic is very time consuming, 
which might motivate us to resort to the use of approximation methods. Any 
computation of the determinant using floating-point arithmetic of bounded 
length is such an approximation. Floating-point arithmetic is usually rather fast 
since it enjoys the needed hardware support on most of today’s computers. If the 
value that we get is sufficiently far from zero, we can be sure that the correct 
value is different from zero and lies on the same side of zero. But how can we 
quantify “sufficiently far from zero”? In any case, we could now use Gaussian 
elimination (see, e.g., [13]j that takes O(D3) time or asymptotically faster 
methods based on matrix multiplication as described, for instance, in [l]. We do 
not believe that the latter methods could be of any practical use, though. However, 
if the value that we get is suspiciously close to zero, we have to use some other 
method to determine the sign of the determinant. 

Finally, we would like to mention that the determinant of a D-by-D matrix 
can be expressed in terms of subdeterminants, and that some of these subdeter- 
minants might later appear again when the evaluation of det AD(C) or det AD(E) 
proceeds. It is conceivable that the values of such subdeterminants are saved and 
used again when needed. Even so, we do not believe that such a method could 
lead to significant savings since we expect that, on average, only very few terms 
of the e-determinants are needed. 

5. FURTHER APPLICATIONS OF SOS FOR DETERMINANTS 
In this section we demonstrate that the algorithmic solution to many geometric 
problems can be based on primitive operations that compute the sign of deter- 
minants. Those include pro’blems that deal with objects different from points. 
There are two major reasons why determinants are useful beyond problems for 
points. One is that more complicated geometric objects are often given by a finite 
set or sequence of points. Examples are line segments given by two points and 
triangles specified by three points. This will be illustrated in Section 5.1, which 
revisits the Parity Algorithm discussed in the Introduction. The other reason 
(and this is the more profound although less obvious of the two) is that other 
objects can be thought of as points in a different space. Take, for example, a 
hyperplane in d dimensions. It can be specified by a linear relation of the form 

%X1 + v2x2 + * . . + qdxd + qd+l = 0. 
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Multiplying this relation with a nonzero constant does not change the hyperplane. 
This suggests that we think of the hyperplane as the point with homogeneous 
coordinates 

in d dimensions. This view of hyperplanes will be discussed in more detail in 
Sections 5.2 and 5.3. Of course, an n-gon specified by a sequence of n points in 
the plane can be interpreted as a point too-in this case it is a point in 2n 
dimensions. However, in contrast to the former case, this view is not likely to 
lead to any useful application of determinants since it becomes increasingly 
expensive to compute them as the size of the matrix increases. Finally, 
Section 5.4 shows that even nonlinear geometric objects such as circles and 
spheres can profitably be interpreted as points in low dimensions as well. 

By no means do we believe that the list of applications for primitives concerning 
the sign of determinants, as presented in this paper, is exhaustive. In fact, 
because of the versatility of determinants, an enumeration of their applications 
in geometric computation is far beyond the scope of this paper. We agree though 
that such an enumeration is a challenging task. 

5.1 Point-in-Polygon Test 

Recall the Parity Algorithm for the point-in-polygon problem sketched in the 
Introduction. In order to test whether a given point p lies inside a simple polygon 
P, the algorithm intersects the horizontal half-line r, whose left endpoint is p, 
with all edges of polygon P. If the number of edges intersecting r is odd, then p 
lies inside P, and if this number is even, p lies outside. The subtlety of this 
algorithm lies in the treatment of special cases since the above characterization 
holds, in general, only if we introduce certain artificial counting mechanisms 
whenever r contains a vertex or even an entire edge of P. In this section we show 
that the test of whether or not an edge intersects the horizontal half-line r can 
be reduced to computing the signs of certain determinants. SOS is then used to 
simulate a perturbation of the point and the polygon that removes all degenera- 
ties. The algorithm assumes that P is given by a sequence of vertices 
(u1, uz, *. . , u,) and that all coordinates including those of p are integers. 

We now consider the problem of testing whether r intersects an edge e of P 
given by its two endpoints. Let u = (vi, u2) and w = (oi, 02) be the two endpoints, 
and recall that p = (rl, 7r2 ) is the left endpoint of r. Because of SOS we can 
assume that u, w, p are not collinear and that no two of the three points lie on a 
common horizontal line. Note first that r and e intersect only if the second 
coordinate of p lies between the second coordinates of u and w. Assume u2 < 02. 
If indeed u2 < 7r2 < w2, then r II e # 0 if and only if (u, w, p) defines a left turn 
(see Figure 3). 

It is now not very difficult to develop this case analysis into a predicate that 
tests for intersection. To perturb the points, we use the same &-expansion as 
described in Section 3.2: 

That is, we replace ui = (vi.19 vi,2) by Vi(E) = (Vi,i(E), Vi,z(e)), where 
Yi,j(e) = vi,j + ~(i, j) with ~(i, j) as in (2). For a uniform treatment, we define 
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Fig. 3. The three cases to co:nsider for r n e using SOS. In (a), r and e do not intersect 
since the second coordinate of p does not lie between those of u and w. In (c), they do 
not intersect since (u, W, p) is a right-turn. 

P = uo = bo,1, v~,~), and write the predicate for arbitrary three vertices rather 
than for v. and two successive vertices of P. 

Predicate 3 (IntersectHalfLine). Let vi, Vj, and vk be three vertices with pairwise 
different indices 0 5 i, j, k 5 ,P. The following pseudocode returns true if the edge 
from Z+(E) to V&(E) intersects the horizontal half-line whose left endpoint is given 
by vi(c), and false otherwise: 

function In2ersectHuZfI;ine (vi; vjuj, vk) returns Boolean 
local i’, j’, k’, s’, d’ 
begin 

W.l.O.g. assume SWUZZZeT(Vj,~; V/Q). 
if SmaZZeT(vj,z; VQ) A SmaZZer(v+; vk,z) then 

SO?q(i, j, k), (2, j’, k’), s’) 

( 

%‘,l(&) Q,2(&) 1 
d’ + SignDetAs z'j',l(E) vjt,2(E) l 

z’k’,l(E) vk’,2(&) 1 

if odd(J) then d’ +- - d’ 
return (d’ = +I) 

else 
return false 

end 

A few remarks are in order. When the above function is applied to the point- 
in-polygon problem, i = 0 a.lways holds. Thus, the sorting of (i, j, k) can be 
reduced to a single comparison between j and k. Furthermore, to avoid all 
degeneracies for the point-in-polygon test, it is sufficient to perturb only the 
point p = vo. Indeed, if 

lVi.l(&) Vi.Z(E ) 1 
1 =o, 
1 ) \ vk,l vk,Z 

then we necessarily have Vj,z = v@ # Vi,z(E) , and therefore, the determinant does 
not even get evaluated. The savings one gets this way are only nominal, which 
we interpret as an argument for the efficiency of our general method. 

The remainder of this sect:ion is used to comment on what happens if the test 
point p lies on the boundary of the polygon P. If we use the above primitive as 
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is, SOS will neglect this special case and find that p lies on either side of P’s 
boundary. The decision depends on the relative positions of p and the vertices of 
P, and we might as well assume that it is arbitrary although consistent. Such a 
decision may or may not be desirable. If it is not acceptable, one could test 
whether or not p lies on the boundary of P before running the Parity Algorithm 
with SOS. Once more this test can be reduced to computing signs of determinants. 

5.2 Hyperplanes in Euclidean Space 
Algorithms for hyperplanes play a central role in computational geometry. This 
becomes obvious when one thinks of the importance of problems such as linear 
programming, computing the intersection of half-spaces, and constructing 
arrangements of hyperplanes (see [9] and [19] for further details and references). 
The goal of this section is to demonstrate how the techniques of Section 4 can 
be used to implement a typical primitive operation needed in those algorithms. 
This will open up an entire class of problems to the use of SOS. The main tool 
that lets us exploit the techniques of Section 4 when we handle hyperplanes is a 
duality transformation that maps hyperplanes to points and vice versa. In 
essence, this transform is nothing but a reinterpretation of what hyperplanes 
and points are. 

In this section we assume that a hyperplane h in Ed is specified by its nonzero 
normal vector a = ((~i, . . . , LYE) and a number, -ad+i, called the offset. Now, a 
hyperplane h consists of all points x E Ed such that 

(x, a> + ad+1 = 0; (8) 

that is, the scalar product of x and a equals the offset. Notice that the hyperplane 
does not change if we multiply the normal vector and the offset by some nonzero 
number. We define h* as the point whose homogeneous coordinates are 
( al,*--, ffd; (Yd+l). Geometrically speaking, h* lies on the line through the origin 
defined by a, and the distance of h* from the origin is the inverse of the distance 
between h and the origin. This can easily be verified after observing that ] (Yd+i ] 
is the distance between h and the origin, provided a has a unit length. Note also 
that the origin lies between h and h* (see Figure 4). Conversely, for a point p 
with homogeneous coordinates (xi, 7r2, . . . , ?rd; r&1) we let p* be the hyperplane 
with normal vector (ri, 7r2, . . . , rd) and offset -‘?rd+l. 

It is straightforward to show that this transformation preserves incidences; 
that is, p E h if and only if h* E p*. Indeed, it is a triviality when one remembers 
what p E h means algebraically, namely, that 

?r*a1 + i?zLyz + . . . + ad(Yd + rd+l&yd+l = 0. 

It is equally easy to prove that this mapping preserves the relative order between 
a point and a hyperplane. To describe what exactly we mean by this, define 

h+ = (X 1 (X, a) + ad+1 > 0) and h- = (X 1 (X, a) + ffd+l < 01, 

and call those the positive and negative sides or half-spaces of h. By order 
preservation we mean that p E h+ if and only if h* E p*+. Here, a warning is 
appropriate to avoid future confusion. If we multiply the normal vector and the 
offset of a hyperplane h by -1, we do not change the hyperplane, but we do 
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Fig. 4. Mapping a line to a point and vice 
versa. 
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change the sides of h; what was previously its positive side is now its negative 
side and vice versa. We will take advantage of this curiosity by encoding the 
positive and negative sides into the hyperplane’s specification. Note that, geo- 
metrically, the normal vector of a hyperplane h points to its positive side. 

The primitive operation that we wish to tackle in this section is to decide on 
which side of a hyperplane hid the intersection of d other hyperplanes 
h,,..., hi,-, lies. By the use of SOS, the absence of any kind of degeneracies can 
be assumed; so hi0 (c) through hi,-,(c) intersect in a unique point that does not lie 
on hid(&). By Cramer’s rule, the intersection point p = (7~1, 7r2, . . . , ad) of d 
hyperplanes is given by the coordinates 

~, _ det Ad,i 
’ det Ad ’ 

where Ad is the matrix 

and Ad,i is the same matrix after replacing the ith column from the left by the 
vector 

Point p lies in the positive half-space of hd if and only if 

Tlaid,l + T2aid,2 + * * * + rd’yid,d + ai,,d+l > 0. 

Provided that det Ad is positive, this is equivalent to 

det Ad,lCri,,, i- det Ad,z&!i,,z + * * * + det Ad,dCI’i,,d i- det Ada,,,+, > 0. 

In case of a negative det A,,, the above statement is valid after reversing the 
direction of the inequality. Consequently, p E h,’ if and only if 

det Ad+, . det Ad > 0. 
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990. 



H. Edelsbrunner and E. P. Mticke - 93 

This can be seen by developing 

aio,l ai,,2 . * * ‘yio,d a&,d+l 
, 

ai,,1 ail,2 * * ’ ai,,d ai, ,d+ 1 

! i *. . ! ! 

aid--l,l WdT1,2 ’ * ’ %d--l,d ai,-,,d+l 

ai,+, aid,2 * ’ ’ a&d ai,,,d+l 

using the last row. Now, we can use this to write a procedure that decides on 
which side of a hyperplane d other hyperplanes intersect. It uses SOS, as described 
in Section 3.3. 

Predicate 4 (OnPositiueSide). Let h,+ hi,, . . . , hid be d + 1 hyperplanes in d 
dimensions, given as in (8), and with distinct indexes 0 I iO, il, . . . , id 5 n - 1. 
The following function, written in pseudocode, returns true if the intersection 
fl;f;A hiA lies in the positive half-space of hi,(E), and false if it lies in the 
negative one. 

function OnPosi~iveSide~(h;,, . . . , IL;,-,; hid) returns Boolean 
local i& . . . , &, s’, 6, it, . . . , &, iz, s”, d” 
begin 

So?q(io,. . .,&I), (ib,. . . ,i&-J, s’) 
SOTtd+l ((ii), . . . , i&l, id), (ib’, . . . , &, ih’), 3”) 

d’ = SignDetAd 

if odd (s’) then d’ t - d’ 

d” c SignDet&+l 

if odd (s”) then d” + - d” 
return (d’ = d”) 

end 

5.3 Nonvertical Hyperplanes 
In many applications we know that all hyperplanes we have to deal with are 
nonvertical; that is, they intersect the dth coordinate axis in a unique point. 
Examples are Voronoi diagrams or, more generally, power diagrams for arbitrary 
order and weighted Voronoi diagrams (see, e.g., [2] and [9]). It is beyond the 
scope of this paper to describe how the data for those problems are used to 
generate hyperplanes; it will be enough to know that they are obtained via 
geometric transforms that do not create vertical hyperplanes. 
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A nonvertical hyperplane h in d dimensions can be specified by a relation of 
the form 

cY1x1+ cY$x~ + - * * + ~d-~&+l + x,j + ‘fd = 0. (9) 
The advantage of describing a hyperplane using this form rather than the one in 
Section 5.2 is that it takes only d parameters rather than d + 1. This will lead to 
some savings when it com’es to computing signs of determinants (cf., e.g., det A4 
in Table VI and det A., in Table V). Since every hyperplane h is now nonvertical, 
we can uniquely define what we mean when we say that a point lies (vertically) 
above or below h. Define 

h+ = {x = (x1, . . . , &) 1 Lyl& + . * * + ad-1 + xd + ad > o), 

and let h- = Ed - h - h+. A point p is said to lie above h if p E h+ and below h 
if p E h-. 

The primitive operation that we consider in this section decides whether the 
intersection of d hyperplanes hi,, . . . , hi,-, lies above or below hyperplane hi,. 
The use of SOS as in Section 3.2 allows us to assume that indeed hi0 through 
hid-, intersect in a unique point that does not lie on h;,. A decision procedure 
based on comparing the signs of the two determinants can be derived from the 
procedure given in Section 5.2. We just replace all &!i,d(&) by 1 and exchange the 
last two columns of the second matrix in function OnPositiveSided. This leads to 
the following predicate: 

Predicate 5 (Above). Let h,, hi,, . . . , hid be d + 1 nonvertical 
hyperplanes in Ed, specified as in (8), and with pairwise different indices 0 5 iO, 
11, - * . , id 5 n - 1. The following predicate returns true if the point of intersection 
flf,h hiA lies above hid(c), and false if it lies below hid(E). 

function Aboved(h;,, . . . , hi,-,; hid) returns Boolean 
local ib, . . . , &, s’, d’, ii, . . . , izml, iz, s”, d” 
begin 

SO?dd((iO,. . .,&.I), (5,. . .,&), 3’) 
sOTtd+l((i~, . . ., id-]!, id), (ib’, . . . , ilf-pi;), s”) 

d’ = SignDethd 

if odd (s’) then d’ I- - d’ 
/ cq’,&) 

d” t SignDe&+l 

I 

. . 

q-& 
aii,l(e) 

if odd (s”) then d” t - 6’ 
return (d’ # d”) 

end 
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5.4 In-Sphere Test 
In d dimensions any d + 1 affinely independent points (i.e., points that do not 
lie in a common hyperplane) define a unique sphere that goes through the d + 1 
points. For example, in two dimensions there is a unique circle through any three 
noncollinear points. Given d + 2 points po, pl, . . . , pd+l , the problem we address 
in this section is how we can determine whether p&l lies inside or outside the 
sphere specified by the first d + 1 points, assuming this sphere is unique. Such a 
test is useful for constructing Voronoi diagrams (as shown in [15] for 
d = 2) and other problems where circles and spheres play a role. 

An elegant solution to this problem can be given using a transform that lifts a 
sphere in d dimensions to d + 1 dimensions where it is represented by a 
hyperplane. This transformation can be traced back in the literature to [21] and 
has since been used throughout the computational geometry literature (see [9], 
[ 151, and [ 191). For the case of circles in the plane, we explain this transformation 
in detail and finally phrase the predicate for general dimensions. 

Let U: 1c3 = xl + X; be the paraboloid of revolution whose symmetry axis is the 
x3-axis, and let 

be a circle in the x1x2-plane. Note that (rl, y2) is the center of the circle and y3 
is its radius. The lifting map transforms c to the plane c* in three dimensions 
given by the equation 

c*: x3 = 2%X1 + 2Y2Q - (7:: + -2 - ya. 

The quick reader will already have verified that the vertical projection of 
U rl c”, which is an ellipse in three dimensions, onto the x13cz-plane is equal to 
the original circle c. A point p = (PE, 7rz) lies inside c if and only if its vertical 
projection onto U lies below c*. This insight gives us some hope that, in fact, the 
problem can be bent such that Predicate 5 from the previous section is applicable. 
Before we continue our exploration in this direction, let us understand how the 
original statement of the problem and the lifting map are connected. Recall that 
there are four original points, which we call po, pl, pz, and p3. The first three 
determine the circle c and therefore the plane c*. Moreover, if we project them 
vertically onto U, then c* is the plane through these points on the paraboloid U. 
The question is now whether pi = (~3,~, ~3,2, 7ri,l + 7rz,2), which is the vertical 
projection of p3 onto U, lies below c* (in which case p3 lies inside c) or above c* 
(then p3 lies outside c). By the use of SOS, we can assume that the four points 
are in general position. 

This problem can be mapped to the plane problem of the previous section if 
we use a dual transform. This transform replaces each point on U by the unique 
plane whose intersection with U is this point. If pi = (7r1, r2, r? + xi), then the 
formula for this dual plane is 

p*: x3 = 2a1x, + 27r2x2 - (7r:: + VT;). 
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We see that this is indeed the lifting map applied to point p = (PE, a2) in the 
x1x2-plane. This duality transform preserves incidences and above-below order 
in a way similar to the duality transform described in Section 5.2. This leaves us 
with the following correspondence between the original point-circle problem and 
the derived plane-point problem: Point p3 lies inside c (the circle through points 
po, pl, and pz) if and only if the intersection point of the planes p,*, p:, and pz 
lies below pz. The statement is also valid if we replace “inside c” by “outside c” 
and “below p,*” by “above p,* .” 

We leave the generalization of this two-dimensional exercise to three and 
higher dimensions to the curious reader. In any case, Predicate 5 can now be 
used to implement Predicate 6, which formalizes the in-sphere test in d dimen- 
sions. If we apply Predicate 5 directly, we will find ourselves computing the sign 
of determinants of the form 

c 27rg . . . 2rio,d -(& + * f * + 7gd) -1 

The sign does not change if we divide the entries in the left d columns by 2. 
Similarly, we can remove the minus signs in the last two columns without 
changing the sign of the determinant. However, there remains one problem with 
determinants of the above type, and this is that the values in the (d + 1)st 
column from the left depend on the values in the left d columns. In particular, 
with SOS, the e-expressions of the point coordinates appear in mixed products in 
the (d + 1)st column. This turns out to be a real pain when we implement SOS 
for this type of determinants. A cheap trick that handles this problem is not to 
perturb the original points, but rather to perturb the vertical projections onto 
the paraboloid in d + 1 dimensions. In effect, this means that we introduce 

ri,,d+l ‘= for OsXsd+l (10) 

and then perturb the points (ri,,l, . . . , ri,,d, rih,d+l). Because the perturbation 
of the (d + 1)st coefficient does not depend on the first d coefficients, this im- 
plies that the points are perturbed away from the paraboloid U. On the other 
hand, if the perturbation is small enough we are still close enough to the original 
situation. 

Predicate 6 (InSphere). Let pi,, pil, . . . , pg+, be d + 2 points in d dimensions 
with pairwise different indi.ces in the range from 0 through n - 1. The program 
below returns true if the perturbed image of pi,,, lies inside the sphere through 
the perturbed images of the first d + 1 points, and returns false if it lies outside. 

function InSphered (p;, , . . . , p;,; P;~+~) returns Boolean 
local i&, . . . , i&, s’, d’, ii,. . . , i&‘, ilf+I, s”, d” 
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begin 
So&j+1 ((io, . . . ) id), (ib, . . . ) i&), s’) 
sOTtd+2((io,. . .,&id+& (ib’, . . .,ih’, i;+l), 8”) 

ri&,l(E) “. ?rih,d(B) ’ 

d’ = Sign&t&+1 i *a. i i 
“;k,l(E) ’ . ’ “ib,d(&) ’ 

if odd (3’) then d’ +- - d’ 
Set ?Tix,d+l as in (??). 

rit,l(E) ” ’ Tit,d(E) Ai~,d+l(‘) ’ 
. . 

d” t SignDet&+2 . 
aii,d;l(E> 1 

‘b;+l,~(E) - ’ * ri;+tl,d(E) ‘Ir;;+l,d+l(E) 1 

if odd (s”) then d” + - d” 
return (d’ # 6’) 

end 

Note that the rightmost column of the first matrix in the above program 
should really consist of -1s. To stress the similarity with predicate Aboued+l in 
the previous section, we replaced the -1s by +ls and thus changed the sign of 
d’. This effect is compensated by the fact that we want to return true where 
function Aboued+l returns false. 

6. REMARKS AND DISCUSSION 

The main contribution of this paper is the introduction of a general technique 
that can be used to deal with degenerate input for geometric programs. The main 
purpose of this paper is to demonstrate that this technique (which we call SOS, 
the Simulation of Simplicity) is immanently practical, despite its high-powered 
appearance. Indeed, the authors believe that SOS will become a standard tool for 
implementing geometric algorithms. A pragmatic consequence of this technique 
is that authors of geometric algorithms can now be more confident about the 
implementability of their algorithms even in the presence of any conceivable 
degeneracies, provided SOS is applicable to their algorithms. 

This raises the question of determining the limitations of SOS-what are the 
properties of an algorithm that allows us to use SOS when we implement it? One 
important feature of algorithms that are amenable to SOS is that their algebraic 
computations are of constant depth. The deeper the algebraic computation, the 
more complicated is the polynomial (or, in general, the function) in E generated 
by SOS, and the less tractable is its evaluation. Another limitation of SOS is the 
necessity of absolute precision in the evaluation of algebraic formulas. As long 
as square roots can be eliminated by squaring the equation and similar techniques 
can be used to remove other irrational functions, this is not a problem, but there 
are cases where it is not that easy. Typical examples for such problem cases are 
algorithms for shortest path problems in a geometric setting. Take, for instance, 
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two piecewise linear paths i,n the Euclidean plane. The length of each path is the 
sum of square roots of integers (assuming the endpoint coordinates are integers). 
Deciding which one of the two paths is shorter is a difficult question unless the 
number of square roots is very small. On the other hand, deciding which one of 
two paths is shorter is not exactly the kind of problems that SOS was invented 
for. 

Another problem is that algorit.hms employing SOS produce results for the 
perturbed set of objects rather than for the original ones. In certain settings, 
such as in computer graphics, this fact can often be ignored. However, when 
“unperturbed” results are needed, some postprocessing has to be performed. This 
paper does not deal with this issue, and further work has to be done. Nevertheless, 
in most of the applications mentioned in this paper the postprocessing step is 
more or less trivial: 

-In the point-in-polygon problem, one can simply add a test of whether or not 
the query point lies on a boundary edge. 

-In the case of Voronoi diagrams or arrangements of hyperplanes, we identify 
and eliminate zero-length edges or higher dimensional faces of zero measure. 

-In the convex-hull setting, it is possible to undo the perturbation simply by 
merging adjacent faces if necessary; for example, in two dimensions, adjacent 
edges that lie on a common line, and in three dimensions, adjacent triangles 
contained in a common plane. 

It is rather difficult, however, to use SOS or any other perturbation scheme for 
finding all data points on the boundary of the convex hull. This is because the 
perturbation may decide that a point is inside the hull if it lies on a boundary 
edge or face. In this case the point would be prematurely discarded. We refer to 
[23] for a more extensive discussion of the limitations of symbolic methods aimed 
at resolving robustness problems in geometric algorithms. 

In order to increase the credibility of our claim that SOS is indeed a practical 
programming tool, the second author compiled a prototype version of a SOS 
library [ 171 and implemented the three-dimensional edge-skeleton algorithm of 
[8]. We believe it is fair to say that this algorithm is an extraordinary challenge 
for someone who wants to do it without SOS. From run-time profiles of this 
program, we learned that most of the computing time was spent on multiplying 
long integers in order to compute signs of determinants. The speedup that we 
got in our implementation from replacing long integer by normal (built-in) integer 
arithmetic was a factor somewhere around 10. Of course, for the normal integer 
arithmetic to work we severely restricted the range of the coordinates that were 
used. In any case, this makes it clear where future work has to go if we want to 
produce programs that are reliable and that are as fast as software that uses 
floating-point arithmetic and is therefore inherently unreliable. The most prom- 
ising way to eliminate this overhead factor seems to be the design of a special 
piece of hardware that computes the sign of determinants for integer matrices. 
Such effort seems justified by the versatility of determinants demonstrated in 
Section 5. We would like to mention, though, that even without the availability 
of such specialized hardware we believe that SOS is of practical value in imple- 
ACM Transactions on Graphics, Vol. 9, No. 1, January 1990. 



H. Edelsbrunner and E. P. Mijcke l 99 

Table III. The 2 Relevant Terms of det A,(E) 

t kt . kt Vt det Mfz Et 

0 2.2 P, 2; 21 d 1 

1 1.1 11, 2; 21 +det(l) = +1 c(i, 1) 

Table IV. The 5 Relevant Terms of det AZ(e) 

t kt . kt Ut det M:) et 

0 3.3 [3, 373; 31 

1 2.2 [2, 393; 31 

2 2.2 11, 3, 3; 31 

3 2.2 P, 2, 3; 31 

4 1.1 IL 273; 31 +det(l) = +1 

c(i, 2) 

4, 1) 

4, 2) 

c((j, 3, (6 1)) 

menting geometric algorithms. Aside from the obvious savings in time and effort 
for the programmer, it seems to us that the use of SOS is currently the only hope 
for producing geometric software that is in any sense reliable. 

We end this section by pointing out a new direction for further research: the 
systematic study of primitive operations used and needed for geometric algo- 
rithms. If one undertook the venture of building a library of primitives for 
geometric algorithms, besides computing signs of determinants, what other 
operations would have to be in the collection ? Is it even clear that computing 
the sign of a determinant is such an indispensable operation, or are there less 
expensive ways to determine the orientation of d + 1 points in d dimensions? 

APPENDIX 

In this appendix we give the relevant subdeterminants, sorted in sequence of 
decreasing significance, needed for computing the signs of det AZ(&), det A,(E), 
det Ad(c), and det A,(e). Each sequence is given in Tables III, IV, V, and VI, 
respectively, which also show the corresponding c-product et and the size k, of 
the matrix Mpd (Mp) associated with the (t + 1)st significant term in the 
&-polynomial det A,(E) (det A,(E)). The third column of each table shows ut, the 
vector that encodes the subdeterminant of depth t. Recall that this vector was 
used to produce the proper sequences of subdeterminants by successive calls of 
procedure Next-u. 
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Table V. The 15 Relevant Terms of det A,(c) 

t kt . kt 0, det M: Et 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

4.4 

3.3 

3.3 

3.3 

3.3 

2.2 

2.2 

3.3 

2.2 

3.3 

3.3 

2.2 

2.2 

2.2 

1.1 

[4, 4, 4, 4; 41 

[3, 4, 4, 4; 41 

[2, 4, 4, 4; 41 

1194, 4,4;41 

[3,3, 4, 4; 41 

12, 3, 4, 4; 41 

11, 3,4,4;41 

P, 2,4, 4; 41 

L 2,4,4; 41 

11, L4, 4;41 

[3,3, 3, 4;41 

12, 373, 4; 41 

11, 3, 3,4;41 

P, 2, 3,4; 41 

+det z:: 
1 

(. > 1 

4 3) 

c(i, 2) 

4 1) 

4i 3) 

4(j, 3), (i, 2)) 

4(i, 31, (i, 1)) 

dj, 2) 

4t.L 21, (6 1)) 

4i, 1) 

&3) 

4% 3), (i, 2)) 

et&, 3), (i, 1)) 

4k 3), (i, 2)) 

u, 2, 3,4;41 +det(l) = +l c((k, 3), (i, 2), 6, 1)) 

ACM Transactions on Graphics, Vol. 9, No. 1, January 1990. 



H. Edelsbrunner and E. P. Miicke l 101 

Table VI. The 50 Relevant Terms of det Ad(c) 

t kt . kt 0, det MP’ et 

0 

1 

2 

3 

4 

5 

6 

1 

8 

9 

10 

11 

12 

13 

14 

15 

4.4 

3.3 

3.3 

3.3 

3.3 

3.3 

2.2 

2.2 

2.2 

3.3 

2.2 

2.2 

3.3 

2.2 

3.3 

3.3 

15, 5, 5, 5; 51 

[4,5, 5, 5; 51 

[3, 5765; 51 

P, 5,5, 5; 51 

[l, 5,5, 5; 51 

[4,4,5,5; 51 

[3,4,5, 5; 51 

1% 4, 5, 5; 51 

L 4,595; 51 

[3,3, 5, 5; 51 

P, 375, 5; 51 

L 3, 5, 5; 51 

[2,2, 5, 5; 51 

L2, 5, 5; 51 

L 1, 5, 5; 51 

[4, 494, 5; 51 

4 1 

di, 4) 

ek 3) 

e(i, 2) 

& 1) 

c(j, 4) 

c((j, 41, (i, 3)) 

e((j, 4), (i, 2)) 

d(j, 41, (i, 1)) 

4, 3) 

c((j, 3), (i, 2)) 

c((j, 31, 6, 1)) 

e(j, 2) 

c((j, 3, 6, 1)) 

dj, 1) 
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Table VI-Continued 

t k, . k, u, det MP’ Q 

17 

19 

20 

21 

22 

23 

24 

25 

26 

27 

tla 

29 

30 

31 

32 

33 

34 

35 

36 

2.2 

2.2 

2.2 

2.2 

1.1 

1.1 

2.2 

1.1 

2.2 

3.3 

2.2 

2.2 

2.2 

1.1 

2.2 

3.3 

2.2 

2.2 

3.3 

3.3 

2.2 

[3,4,4,5; 51 

[2,4,4,5; 51 

D, 494, 5; 51 

[3,3, 4, 5; 51 

P, 3,4,5; 51 

[l, 394, 5; 51 

P&2, 4,5; 51 

P, 2,4,5; 51 
11, 1,495; 51 

[3,3,3,5; 51 

[2,3,3,5; 51 

[l, 3,395; 51 

P, 2,375; 51 

L 2,3, 5; 51 

P, 1, 3,5; 51 

12, 2,295; 51 

P, 2, 2,5; 51 

L 1, 2, 5; 51 

[l, 1, 175; 51 

[4,4,4,4; 51 

[3,4, 4, 4; 51 

-det(d = -Q 
+Ww) = +w 

+det(d = +w 

4(k, 4), (i, 3)) 

4th 4L 6, 2)) 

4th 41, (6 1)) 

c((k, 41, CL 3)) 

d(k, 4), (i, 3), (6 2)) 

c((k, 41, (i, 3), (6 1)) 

c((k, 4h (i, 2)) 

c((k, 4), (j, 2), (i, 1)) 

c((k, 4L (i, 1)) 

4k 3) 

4@, 3), (i, 2)) 

4k 3), 6, 1)) 

et&, 3h (j, 2)) 

c((k, 3), (j, 2), (i, 1)) 

4% 3), (j, 1)) 

&, 2) 

4k 3, (6 1)) 

c((k, 3, (i, 1)) 

c(k, 1) 

41, 4) 

E(U, 4), (i, 3)) 
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Table VI-Continued 

t kt . kc 4 

38 2.2 P, 4,474; 51 

40 1.1 12, 3,494; 51 

41 1.1 L 3,4, 4; 51 

42 2.2 [2,2,4,4; 51 

45 2.2 [3,3, 394; 51 

46 1.1 [2,3, 394; 51 

47 1.1 L3, 394; 51 

48 1.1 12, 2, 3, 4; 51 

49 0.0 1192, 394; 51 

det M> et 

c(U, 4), (i, 2)) 

E(U, 4), (i, 1)) 

~((1, 4), (i, 3)) 

+det(%,l) = +rk,l 

-det(*k,,) = -*k,Z 

c((Z, 4), (j, 3), (i, 2)) 

~((1, 4), (i, 31, (i, 1)) 

4(1,4), (i, 2)) 

+det(*k,s) = +*k,3 c((l, 4), (i, 21, 6, 1)) 

ECU, 41, (i, 1)) 

4U, 4), k 3)) 

-det(rj,,) = rj.1 

+det(rj,l) = +rj,z 

+det(ri,i) = +?r;,i 

+det( ) = +l 

4th 41, (k, 3h 6, 2)) 

4th 41, (k 31, (6 1)) 

e((Z, 41, (k, 31, (i, 2)) 

~((1, 41, k 31, (i, 2h (i, 1)) 
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